Banach spaces whose duals contain complemented subspaces isomorphic to C[0, 1]

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON BANACH SPACES WHOSE DUALS ARE ISOMORPHIC TO l1(Γ)

In this paper we present new characterizations of Banach spaces whose duals are isomorphic to l1(Γ), extending results of Stegall, Lewis-Stegall and Cilia-D’Anna-Gutiérrez.

متن کامل

PFA and complemented subspaces of ℓ∞/c0

The Banach space `∞/c0 is isomorphic to the linear space of continuous functions on N∗ with the supremum norm, C(N∗). Similarly, the canonical representation of the `∞ sum of `∞/c0 is the Banach space of continuous functions on the closure of any non-compact cozero subset of N∗. It is important to determine if there is a continuous linear lifting of this Banach space to a complemented subset of...

متن کامل

Isomorphic and isometric copies of l∞(Γ) in duals of Banach spaces and Banach lattices

Let X and E be a Banach space and a real Banach lattice, respectively, and let Γ denote an infinite set. We give concise proofs of the following results: (1) The dual space X contains an isometric copy of c0 iff X contains an isometric copy of l∞, and (2) E contains a lattice-isometric copy of c0(Γ) iff E contains a lattice-isometric copy of l∞(Γ).

متن کامل

On c0-saturated Banach spaces

A Banach space E is c0-saturated if every closed infinite dimensional subspace of E contains an isomorph of c0. A c0-saturated Banach space with an unconditional basis which has a quotient space isomorphic to l2 is constructed. A Banach space E is c0-saturated if every closed infinite dimensional subspace of E contains an isomorph of c0. In [2] and [3], it was asked whether all quotient spaces ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1973

ISSN: 0022-1236

DOI: 10.1016/0022-1236(73)90033-5